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ON GENERALIZED HYDRODYNAMIC EQUATIONS 
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Abstract- In the paper a new method is presented to compose generalized solutions of hydrodynamics 
equations. In the derivation of a viscous fluid equation, discontinuous change of the velocity is taken into 
account that occurs in shock waves. eddy flows. sonic and supersonic flows. This discontinuity is not 
included into hydrodynamic equations in the Navier-Stokes form. 

The present method is illustrated by the solution of the problem on interaction of a vortex fibre with 
the surface. In this particular case the Euler equations result in the known paradox of Felix Klein and 
the Navier-Stokes equations give paradox solutions examined originally by M. A. Goldshtik. 

The present method eliminates the above paradoxes. 
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NOMENCLATURE 

velocity vector component along 
the axis x, y, z ; 
set of smoothing points; 
kinetic energy of elementary mesh ; 
mesh density ; 
Reynolds number ; 
potential energy of elementary 
mesh. 

contradiction mathematicians tried to revise the 
classical definition of the function derivative. 
Indeed, the classical theory of differential equa- 
tions involves the problems dealing with smooth 
functions. So, to check whether the function 
u(x, t) satisfies the equation 

au au o --_= 
at ax 

it is necessary to evaluate the derivatives 
entering into the equation. Sobolev’s attempt 

1. INTRODUCTION 
to withdraw the demand of smoothness from 

AMONG the workers who analysed motion of 
u(x, t) resulted in the concept of a generalized 

finite amplitude plane waves Riemann was the 
solution. The function u(x, t) which is not 

first who encountered with transformation of 
necessarily smooth is called a generalized 

some derivatives of the differential equation 
solution if for any finite smooth function cp the 

into infinity and formation of shock waves. 
equality 

Riemann demonstrated that in this case the 
initial differential equation becomes senseless 

jj(u$ - ug)dxdt = 0 (1.1) 

as for its derivation the desired functions and holds. 
their derivatives had been assumed smooth. He Equality (1.1) is the original algorithm for 
showed also that in very particular cases only finding the solutions of u(x, t) in a generalized 
(these were later called the Hugoniot compati- sense. 
bility conditions) gas motion strictly follows the In the derivation of the above equation the 
differential equation. derivative of the function u(x, t) is actually 

In their attempts to find the source of this transferred to any smooth function cp. 
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If the initial equation (1.1) is nonlinear, then 
its derivation involves some diffl~ulties reported 
by S. K. Godunov [l J. 

Let us consider a very simple nonlinear 
equation 

au au -- u--o. 
at ax 

If it is written as 

an a u2 

(> 
--- - = 
at ax 2 

o 

then the generalized solution may be defined as 
a finite summable function u(x, t) for any cp 
satisfying the identity 

dxdt=O. (1.2) 

The first problem is encountered in treating 
the above equations is as follows. The same 
equation may be written as 

that results in a different definition of a general- 
ized solution 

1.2 a9 --_-- 3 ax dx dt = 0. (1.3) 

Many examples may be found which evidence 
that some solutions in the sense of equation (1.2) 
are not the solutions in the sense of equation (1.3) 
and vice versa, that is definitions (1.2) and (1.3) 
are not equivalent. 

The second problem which is passed over by 
mathematicians in silence. It arises because due 
to arbitrariness of functions cp(x, t), we distort 
the initial differential equation thus contraven- 
ing the laws of nature. 

In the present paper a new method to obtain 
generalized solutions is suggested which does 
not involve the discussed problems. 

2. PARTICULAR OPERATIONS WITH 
DISCONTINUOUS FUNCTIONS 

Letf = f(x) have a number of alternating dis- 
continuities of the first kind, that makes suitable 
its finite-difference representation. To do this, 
the whole section of the changing argument x 
is to be devided into i parts following the rule 
xi = x0 + ih. As to the behaviour of the function 
f(xJ, it is assumed constant within each grid 
mesh and changes in a stepwise manner at the 
grid nodes (Fig. 1). 

FIG. 1. 

If the central coordinates of each mesh 
Xgi = Xi +3(X,+1 - Xi) are introduced, then the 
discontinuous function may be approximated by 
a system of smooth functions cp,(x) within the 
range (x,,- i, x&. It should be noted that the 
functions q.(x) are to contact the sections of the 
straight line at the points x~~_~, x,,? The be- 
haviour of these functions within the interval 

(%- 1, xai) is unimportant as unite-difference 
sections does not convolute into points. The 
functions q,(x) are evident to have inflections 
inside the section (xgi- I, xgi). 

N. P. Kasterin was the first who used such 
smoothing discontinuous function [2]. 

In accordance with the theory of generalized 
functions q,,(x) (n = 1, 2, 3, . . .) forms the space 
of main functions for the function f = f(xJ. 

The section (Xi_ I, xi+ 1) is called an interval 
of the function f(xJ, and (xgi_i, xgi) is the 
carrier of the function cp,(x). 
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To satisfy the above conditions, it is necessary 

to assume 

f’(xi) = fi- 1 = const, Xi - 1 < X < xi 

i f; = const, xi < x < xi+, 

t2 1) 

v%(X) = 
= const, X 6 Xgi- L 

const, x 3 xgi 

cPkxi) = 

i 

a, h >.I-1 
- 4 1; <fi- 1. 

(2.2) 

The condition of adjoining the sections of the 

straight-line is equivalent to zero derivatives at 

the points xei and xgi- I, i.e. 

d’“‘cp,(x) 

dx” 
E 0 if xgi < x < xc,- 1. (2.3) 

A linear continuous functional defined by 

X0i 

(.L CP) = J .Axi)qLx) dx = .L 1 
.x%c -1 

x j;, cp,W dx + f, Ji cpnb) dx (2.4) 
xi 

will be referred to as a generalization of the 

discontinuous function f(xi). 
For example, if 

X!;,~.(x) dx = ?I’ q,,(x) dx = t 
XC 

then 

(2.5) 

Here for computation of formula (2.6) the 

properties of formulas (2.1) and (2.2) were used. 
This equality will be used as the basis for a 

general definition of the derivative of the 
generalized function. 

The subsequent derivatives are easily found 

d2(.f; cp,) 
dx2 

- - (J1 -fi- l)(Ph(Xi)r 

d%$ = (fi _h_ &$(Xi), 

d%;“’ = ( - 1)“- ‘(fi _fi_ ,,cpp- “(Xi). (2.7) 

If the absolute value of the first linite-differ- 

ence derivative is introduced 

dip, fi -.L1 
d xgi_ 1 = ~i;-~-;,,, 

(2.8) 

then formulas (2.7) may be rewritten as 

d’“‘(.f: cpn) _ df;- 1 _ Ix --- 

d x” ” ’ dxoip, 
(2.9) 

where 

!X,_l = ( - 1)“- ‘(XOi - xgi_ ,)(p’“_ “(Xi). (2.10) 

Thus, generalized derivatives of discontinuous 

function f(xi) are expressed within a factor in 

terms of the first finite-difference derivative. It 
may be easily seen from formula (1.10) that the 
factor tl,_ 1 determined the direction of the jump 
of a discontinuous function and may therefore 
be positive or negative. 

To define the derivative of the generalized 

functionf(xi), compose the functional 

5°C 
(.f’ , con) = $ f ‘(xi)qn(x) dx 

-Q~l 

= (h -.I- 11 cPntxi). (2.6) 

3. ON HYDRODYNAMIC EQUATIONS OF 
DISCONTINUOUS I%OWS 

Professor N. P. Kasterin who worked at the 

Moscow State University raised the question of 
revising the Euler form of hydrodynamic equa- 
tions as far back as 1937. Kasterin was the first 
who stated and developed the idea that vortices 
are generated due to discontinuities in ideal 
fluid rather than to viscous forces. However, his 
mathematical manipulations were only based 
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upon physical intuition. In what follows it will V, = v, _ + Ax avi- I 

be demonstrated that Kasterin’s equations for ’ ’ ’ 
,M. 

O’ O axOi_ 1 

ideal fluid represent a particular case of more 
general equations given by the present author. avi- 1 

+ Ayoiclo ayoi_ 1 
+ Azoicco z;L 

01 1 

f where 

AXOi = Xoi - X0,_ 17 

*Yoi = Yoi - YOU- I (3.1) 
+* I 

0” __--@-- 
AZ,, = ZOi - ZOi- I. 

---- 

I Introduce the value Cli which is the ratio of the 

‘I dimensions of two meshes 

ai = ZElz! = ____ = Yi+l -Yi zi+l -zi 
c-c 
I 5i ‘, $+I I xi - x, _ 1 Yi - Yi-1 zi - Zi- 1’ 
1-I 

If a grid mesh is composed so that 
FIG. 2. 

xi+l - Xi- 1 = 2 (XOi - XOi_ 1) 

In a space filled with liquid an elementary Yitl - Yi- 1 = 2 (YOi - YOi- 1) 

grid mesh is cut out (Fig. 2) so that its dimension zi+l - Zi_l = 2(zOi - zOi- 1) 
depends on the value ri - ri_l where r is the 

then formulas (3.1) may be rewritten as radius vector with the coordinates x, y, z. 

A 

AxOi = (1 + C(i)(XOi- 1 - Xi- 1) 

= (1 + Cri)AXOi 

*Yoi = (1 + aJ(Yoi - Yi-1) 
= (1 + Hi)*yoi 

AzOi = (1 + Gli)(ZOi- 1 - Zi- 1) 

= (1 + ai)AZoi. (3.2) 

r !+ 01 

FIG. 3. 

Further, the hydrodynamic velocity vector 

Now the Taylor series for the function of Vi 
will be rewritten as 

1 - Vi=Vi_l+p 

av- 1 

+ AJoi I 
Goi- I 

+ Azoi F) (3.3) 
Or 1 

V(ri) is assumed to be a discontinuous function where /I denotes 
that behaves as the functionf(xi) (Fig. 3). 

Let us consider the i-th grid mesh [ri, ri+ l]. 
/I = (l + Cti)(XOi - XOi_ l)Cp’O’(Xi) 

Its velocity may be expanded into a Taylor = (l + %)(YOi - YOi-l)cP’“‘(Yi) 

series if formula (2.9) is used = (1 + CCi)(ZOi - ZOi - ZOi- l)Cp’O’(Zi), 
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Change of the velocity from Vi _ 1 to Vi causes 
additional rotation of all the points of the mesh 
with respect to the center of gravity of the neigh- 

bouring mesh with the angular Jelocity wi_ 1 = 
= x0 rot Vi_ ,. A mean linear velocity of all 
points of the grid mesh due to the additional 
rotation is then 

V,’ = x0 rot Vi-, x (rOi - vOipl) 

= /j rot Vi_, x (rgi- 1 - rim ,). (3.4) 

Further, the volume expansion rate of the mesh 
under deformation (roi - r,,- ,) is 

V,’ = /I(roIml - ri-l)divV,_,. (3.5) 

Then the total velocity of the i-th grid mesh will 

be equal to 

V = Vi + V,l + v;. (3.6) 

If 111 is used to denote the mass of the mesh, 
then its kinetic energy is 

T= 

t 

+ 

tw2 
- = Ii1 

2 

Ayoi iif’,‘- 1 __~~ 
2 h-l 

I AZoi an,2_ 1 

2 azoip, > 
/l(ro,_, - r,_ ,)(rot Vi-t x Vi. , 

+ Vi_, divV,_,) (3.7) 

the squared velocity vector being’ defined in 
terms of projections U, I:, w as 

vf- 1 = u;- 1 + zf-, + wf- ,. 

Let the grid mesh be in a homogeneous field 
of surface forces. Then its potential energy is 
defined by the known formula 

n = - Fro,. 

Surface forces are ordinarily prescribed by 
their distribution density over the surface or by 
the stresses 

AF 
P= lim-;Aa-,O. 

Aa 

Now the following inverse formulas for the 
vector prqjection are valid 

where 

tJ1 

is the grid mesh density. Then the potential 
energy formula will be 

yo,, (3.8) 

Introduction of the generalized coordinates 

x0,- ,, yo,- 1, zoi- , and generalized velocities 

dxoi - 1 dye, - 1 ----- = u,_,;p_ = 1: _ dz,, , 

dt ’ dt ’ ” dt wL..’ 

transforms the system of Helmholz equations 

for an elementary volume to 

(3.9) 

where H = II - T is the kinetic potential. With 
account for equations (3.7) and (3.8), the system 
(3.9) becomes 

W_ 1 

at- + (1 - /j)(Vi_ IV)Vi_ I - 

- /?V,_ I div Vi-- , 

1 c7P 

( 

ap apz -2 + -- + .__~~ 
=b ax a4 > apz 

As the above equality is valid for any two neigh- 
bouring meshes, the superscripts (i - 1) may be 
omitted. Then use of Stokes’ hypothesis gives 
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P;; +p[(l - /T)(W)6 - /Wdiv V-j 

+ grad w )I + grad (2 div V). (3.10) 

Equation (3.10) was originally obtained on the 
molecular-kinetic basis by A. S. Predvoditelev 
[3]. If viscosity is neglected and the product 
V div V is assumed to be zero, then Kasterin’s 
equation is obtained for the case fi = 2. 

It should be noted that if V # 0, then assump- 
tion of a zero product is equivalent to substitu- 
tion of a solid for an elementary fluid mesh at 
the place of discontinuity. 

4. EXAMPLE OF GENERALIZED SOLUTION 

Now consider the problem of an infinite plane 
interacting with an infinite vortex column which 
passes through the coordinate origin normally 
to the plane. If there were no plane the motion 
should be governed by the law 

where 1; is the tangential velocity component, 
pm is the pressure at the infinity. The vertical w 
and radial u velocities would be zero in this case. 
Friction of the flow against air results in secon- 
dary flows which may be of interest for studying 
sand-storms, water spouts and hurricanes. 

It is of interest to note that treatment of this 
problem on the basis of the Euler equations 
leads to Felix Klein’s paradox. Klain has found 
that within the framework of ideal fluid, 
infinitely large energy is required to sustain a 
vortex column. It might seem that viscosity 
should eliminate the said paradox. However, 
treatment of this problem in terms of the Navier- 
Stokes equation made by M. A. Goldshtik [4] 

has shown that for Reynolds numbers above 8 
the discussed problem has no finite solution. 

Assuming incompressible steady axisymmetric 
tluod flow, Predvoditelev’s equations (3.10) may 
be written in terms of cylindrical coordinates 

1 ap =--- 
P ar 

a(rk a(rw) 

ar +aZ= 
0. 

The boundary conditions are as follows 

u=o=w=Oatz=O 

,:+p=p, P4 
-T7atz= J3. 

(4.1) 

At the infinity the fluid is stagnant 

u=i:= w=O;p=p,atr= 30. 

At r = 0 the component w is finite, and u = 0 
(no sources or sinks on the axis). 

Introduce the dimensionless functions 

ru rc rw 
P=--;@=--;Gi_-;71= r% - P,) 

c 0 c 0 co Pd - 

(4.2) 

(the bar above the quantities will further be 
omitted). 
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System (4.1) is then transformed to 

( au au 112 + Q2 
(1-B) u-+w--- = 

ar a2 r ) 
an 2n v a% lau a% 

-g+--+-r 
r co t 

Z-rar+aZ’ ; 
) 

( aw aw 
(1-P) u-+w---- 

> 

an 
ar aZ r 

ZZ-- 
iiz 

+;r g-;g+E+g 
( 

2 

0 / r2 1 

au 
ar 

The boundary conditions 
come 

u=@=w=O 
@Z l;n= -3 
u=w=o 

+$o. (4.3) 

will respectively be- 

atz=O 
atz= x 
at r = 0. 

The problem under discussion belongs to the 
class of similar problems. We therefore pass to 
the variable n = z/r, bearing in mind that 

37 2da 1 d i2 z2 d2 
-= 
ar 

- __;__ = -_;_ - --T 
r dn az r dq ar ’ - r4 dy 

2 

+?z?._a-=kt.~& 

r3 dn’ i3z2 r2 dn2 ’ co 

Then the following equations are obtained 

(1 - /j) [l4’(w - r/u) - uz - @‘I = n7L’ + 271 

+ k [(l + n2) u” + 3yu’] 

(1 - /I) @‘(w - y/u) = k [(l + q2) @‘I + 3@‘] 

(1 - p) [w’(w - r/u) - uw] = -rc’ 

+ k [(l + q2) w” + 3qw’ + w] ; id= Y/U’. 

(4.4) 

It may be easily seen that the boundary condi- 
tions become 

u=@=w=O atn=O 

u=w=O;@=l,rr= -iatn= x. (4.5) 

The pressure may be found in a straightforward 
manner by a single integration of the third 
equations of system (4.4) over n and satisfying 
the boundary conditions (4.5) 

x = - (1 - fl) w(w - vu) + k [(I + n2) w’ 

+ V/w] - 3. (4.6) 

The new variables and function are introduced 

x = J&q; Y = JCl : 12) (w - v) 

= JU - x2)(w - *3 . (4.7) 

Then from the continuity equation we may 
easily get 

u = - (1 - x2)y’ - xy; 

w = J(1 - x2) (y - xy’) (4.8) 

where prime denotes differentiation over x. 
Now system (4.4) is simplified 

- k( 1 - x2)2 y”’ = 1 + (1 - /I, y2 - Q2 

x(y2)' (l ; X2) (y2)” - 1 (4.9) 

k( 1 - x2) @” = (1 - p) y@’ 

with the boundary conditions 

y(0) = 0; y(l) = 0; y’(0) = 0 

@i(O) = O;@(l) = 1. 

Differentiation of equation (4.9) gives 

- k(l - x2) y” + 4kxy”’ = (1 - /j) 

(4.10) 

(4.11) 

(4.12) 

X 

[ 

- $f$) - ;(y2y]. 

The above result is integrated three times with 
the original boundary conditions (4.11) 
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condition (4.12). It is evident that a = a’(O). 
Further let 

*xx 

@DQi’ 

1 

-YL (1 - x2) s(x). 

(1) 
dx-;. y=(l -p> 

(4.18) 

(4.13) 
Then we shall have from (4.14) and (4.17) 

The unknown y”‘(O) is to be found from equation (1 - B) F(x) St = s2 + ~ 

(4.9) 4k2 (1 - x’)~’ @ 

y”‘(0) = - ;. 

Then the final result will be 

Zk(1 - x2)y’ + 4kxy - (1 - P)y’ 

= a [ [exp [ 2s dx] dx ; 

Q =/i[exp[2sdx]dxj-‘. (4.19) 

As far as formula (4.16) is valid, the unequality 
s x 

= 4(1 - p) ii’s W dx 
(I--lrzJ-xz+cx 

established by M. A. Goldshtik holds 
(4.14) 

@(x)<xatO~x<l. (4.20) 
000 

with additional notation 2ky”(O) = C. Now transform formula (4.15) using the formula 
The foIlowing notation is useful for further for transformation of repeated integral into 

manipulations single integral 

* zi x 

F(x) = 4(1 - /?) 
sss 

@V 
-------dx - x2 + cx. F(x) = 2(1 - /?) 

X(x - ty 

(1 - x2) (4.15) s 
(1 _ r2) @@ dt - x2 + cx. 

000 0 

The second condition (4.11) implies that 
F(1) = 0. 

(4.21) 

As regard to the order and sign of (1 - p), we Having found C from the condition F(1) = 0, 

assume we shall find 
r- 

0 < (1 - /I) < 1, (4.16) F(x) = x - x2 - 2(1 - /I) (1 - xl2 
1 

Then equation (4.10) may be rewritten as 

y@’ = (1 - 0) 
L(l - x2) W. 

Integration of the above yields 

J 1 

tQi2 4p2 dt --___ 
(1 -pydt+ (I+* s 1 (4.22) 

0 x 

The last two terms in square brackets are strictly 
positive. Therefore with account for formula 

s 

s (1 - 8) ydx 
(4.16) the following inequality is valid 

@’ = a exp -z- (1; X 

0 F(x) 2 x - x2 - 2(1 - x)2 
X 

*‘l-p ydx 

SL f 1 
s 

tQj2 

(1 - t2)2 
dt 

@=a 
0 

exp y-(1) 
dx. (4.17) / 1 

0 0 

s 

Q2 dt 
-2x ~ 

(1 + t)2 a O+ 
(4.23) 

The constant a may be found from the last X 



Thus when 0 d x ,< 1, F(x) 2 0; therefore on 
the basis of Chaplygin’s theorem on differential 
inequalities it follows that s 2 0, and conse- 
quently, y 3 0. 

Using the results by M. A. Goldshtik, 
inequality (4.23) may be specified 

F(x) 2 F,(x) = $x(1 - x2)2 at 0 d x < 1. 

(4.24) 

Consider the equation 
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formula (4.16) at {j # 0 for any Re such a 
parameter may be matched which make in- 
equality (4.30) valid. Thus, the problem discussed 
is soluable at any Reynolds number within the 
class of smooth functions. It should be noted 
that matching of parameter [j is equivalent to 
the choice of the main function which approxi- 
mates the discontinuity function. As a set of 
main functions make a space, then the solution 
obtained should be understood in a generalized 
sense, i.e. several solutions may be always 
obtained which will tend in the limit to an 
ordinary solution. Probably, additional physical 
considerations are necessary for singling out 
this extreme solution. 

$ = TX + (1 - (iI F2c-4 ~__ -~ 
4k2 (1 - x2)2’ 

(4.25) 

Solution (4.25) that satisfies the condition 
r(0) = 0 is of the form 

J&d) 
7rJsy = $j2’;). (4.26) 

From comparison of equation (4.15) with 
equation (4.19) in view of inequality (4.14) on 
the basis of Chaplygin’s theorem on differential 
inequalities, it may be concluded that 

S(X) 2 z(x)at 0 d x < 1. (4.27f 

Function (4.16) is a meromorphic function with 
the poles at the points 

$3 ,/(2) tin!; (4.28) 

where p” are the roots of equation J_+(p) = 0. 
As from the condition, s(x) is a continuous 
function over the interval (0.3) then for in- 
equahty (4.27) to be fulfilled, it is necessary to 
require that the first pole of function (4.26) would 
lie-outside the interval (0.1) i.e. 

- x(y2)‘] dx ; k ,i x(x) (1 - x2) @” dx 

= (1 - ~)J@)Y@‘~x. (4.31) 

The first approximation is sought as 

&(x) = 1 ; y = u,x*(l - x2): @ = x 

+ {jIX(l - x2). (4.32) 

;. (4.29) 
Then for determination of unknown coefficients 
u1 and b,, the additional nonlinear system of 
algebraic equations is used 

k 1 
x1 > lor 

J(l - p) ’ qJ(2)1, = 

Inequality (4.29) may be rewritten as 

Re J(l - /3) < 8. 

Hence if /I = 0, we arrive at the paradox found 
originally by M. A. Goldshtik: at the Reynolds 
numbers above 8, the problem discussed has no 
finite solution. But because of validity of 

(4.30) 4ka,=lfy $y:-; ( _ .$, ) - ; kb, = “;’ ;$.Q - ~a,h, > (4.33) 

with the additional notation (1 - (I) = 7. 

The solution of the boundary-value problem 
(4.9) (4.10) at the boundary conditions (4.11), 
(4.12) will be sought using Dorodnitsyn’s 
method of integral relations. Multiplication by 
the smoothing function x(x) and integration 
from zero to unity give the system of integral 
relations 

- k .i x(x) (1 - x2)’ 4”” dx = .i x(x) dx 

+ (1 - ,+~x,[y’ - Q2 - 
i - x2 
-F (y2y’ 
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System (4.33) has been solved by successive 
approximations using the iteration procedure 

-&h-, ;k 

2 
- 105 wn- 1 b,, = 0. (4.34) 

The calculations were carried out on a computer 
“Promin-2”; these for Re = 100 are listed in 
Table 1. 

Any of the values given in Table 1 is a 
generalized solution of the stated problem 
differing by the choice of a smoothing function. 
It should be noted that from the obtained set of 
generalized solutions, one physical solution 

must be selected. To do this the obtained 
solutions should be tested for stability. 

Table 1 

. . 0.384. 10-l 0.448. lo-’ @512. 1o-2 
__. 

a1 32.914 26.112 42.112 

b, - 1.6546 -2.4413 -4.3730 
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SUR LES EQUATIONS GENERALISEES DE L’HYDRODYNAMIQUE UTILISEES 
DANS LA THEORIE DU TRANSFERT THERMIQUE 

RCsumC-On a p&sent& dans cet article une nouvelle mtthode de composition des solutions gtnCrales 
des kquations de l’hydrodynamique. Dans I’Btablissement de I’huation pour un lluide visqueux on a 
tenu compte du changement discontinu de la vitesse qui intervient dans les ondes de choc, les Ccoulements 
turbulents, les ecoulements soniques et supersoniques. Cette discontinuite n’est pas incluse dans les 
tquations du type Navier-Stokes. 

La prbente methode est illustr&e par la solution du problkme sur l’intbaction d’une ligne tourbillon 
avec la surface. Dans ce cas particulier, les iquations d’Euler aboutissent au paradoxe connu de F8ix 
Klein et les tquations de Navier-Stokes donnent des solutions paradoxales propos&es en premier par 
M. A. Goldshtik. 

La mCthode prtsentCe ici Climine les paradoxes mention& ci-dessus. 

ALLGEMEINE, IN DER WARMEUBERTRAGUNG ANGEWANDTE 
HYDRODYNAMISCHEN GLEICHUNGEN 

Zusammenfassung-Es wird eine neue Methode vorgeschlagen, urn allgemeine Lasungen der hydro- 
dynamischen Gleichungen N erhalten. In der Ableitung der Gleichung eines viskosen Fluides wurde die 
diskontinuierliche Geschwindigkeitsgnderung beriicksichtigt; sie kommt in Stosswellen, Wirbelstramung- 
en und Schall- und OberschallstrBmungen vor. Diese Diskontinuitgt ist in den hydrodynamischen 
Gleichungen von Navier-Stokes nicht enthalten. Die vorliegende Methode wird durch die LGsung des 
Problems der Wechselwirkung zwischen Wirbelfaden und Oberfliiche veranschaulicht. In diesem Fall 
ergeben die Euler-Gleichungen das bekannte Paradoxon von Felix Klein, wiihrend die Navier-Stokes- 

Gleichungen die paradoxcn Lijsungen ergeben, die von M. A. Goldshtik zuerst untersucht wurden. Die 
vorliegende Methode eliminiert diese Paradoxa. 



GENERALIZED HYDRODYNAMIC EQUATIONS 

AmoTaqwi-B AaHHOii pa6OTe rIpe&JEWaeTCf? HOBbIli cnoco6 IIOCTpOeHMR 0606WeHHbIX 

peU.leHllfi ypaBHeHH& IWJ&IOAHHaMAKM. CYTb cnoco6a COCTOHT 3 TOM, ~TOdhl npH BbIBOAe 

ypalswend BR~KO~~ ~(IIAKOCTR ysecTb paspbmfoe W3MeHeme m~po~maMwiecKofi CHO~OCT~, 

VT0 HMeeT MeCTO B yAapHbIXBOJIHElX,BHXpeBbIX TeYeHMRX II IIpH 3ByKOBblX M CBepX3ByKOBbIX 

TeqeWLlAXYI9TO He OTpaWeHO B YpaBHMHMRXlrHApOAYlHaMHKB B+OpMe f&Bbe-CTOKCa. 

yKaZNHIfbIi% CIIOCO6Il~O~e?vlOHCTp~~OBaHHapeUleHMLl3a~aW OB3aMMOAetiCTBI4M BMXpeBOfi 

HllTMC IlOBepXHOCTbIO.YpaBHeHlIH~tiJlepal33TOM CJIyYaenpliBOAFiTKH3BeCTHOMy WlpaAOKCy 

cDenm<ca lH'.netiHa, a ypameHm Hanbe-CToKca AamT napaAoKcanbHbIe pemeww, snepme 

RCCJle~OBaHHbIe M. A. rOJIbAIIlTRHOM. 
~~C?~JKiIYieMb&i HaMW cnoco6 ROCTpOeHYrH 0606qeHHbIX peIUetIHii yCTpaHReT yK33aHHbIe 

I'Iapa~OKCbt. 
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