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Abstract—In the paper a new method is presented to compose generalized solutions of hydrodynamics
equations. In the derivation of a viscous fluid equation, discontinuous change of the velocity is taken into
account that occurs in shock waves. eddy flows. sonic and supersonic flows. This discontinuity is not
included into hydrodynamic equations in the Navier-Stokes form.

The present method is illustrated by the solution of the problem on interaction of a vortex fibre with
the surface. In this particular case the Euler equations result in the known paradox of Felix Klein and
the Navier-Stokes equations give paradox solutions examined originally by M. A. Goldshtik.

The present method eliminates the above paradoxes.

NOMENCLATURE

U, v, w, velocity vector component along
the axis x, y, z;

Xo, Yo» Zo»  S€t of smoothing points;

T, kinetic energy of elementary mesh ;

0, mesh density ;

Re, Reynolds number ;

I, potential energy of elementary
mesh.

1. INTRODUCTION

AMONG the workers who analysed motion of
finite amplitude plane waves Riemann was the
first who encountered with transformation of
some derivatives of the differential equation
into infinity and formation of shock waves.
Riemann demonstrated that in this case the
initial differential equation becomes senseless
as for its derivation the desired functions and
their derivatives had been assumed smooth. He
showed also that in very particular cases only
(these were later called the Hugoniot compati-
bility conditions) gas motion strictly follows the
differential equation.

In their attempts to find the source of this

contradiction mathematicians tried to revise the
classical definition of the function derivative.
Indeed, the classical theory of differential equa-
tions involves the problems dealing with smooth
functions. So, to check whether the function
u(x, t) satisfies the equation

ou Ou

& ox
it is necessary to evaluate the derivatives
entering into the equation. Sobolev’s attempt
to withdraw the demand of smoothness from
u(x, t) resulted in the concept of a generalized
solution, The function u(x,f) which is not
necessarily smooth is called a generalized
solution if for any finite smooth function ¢ the
equality

ot Ox (D

ff (uia—(e - ua—q’)dx dt =0
holds.

Equality (1.1) is the original algorithm for
finding the solutions of u(x,t) in a generalized
sense.

In the derivation of the above equation the
derivative of the function u(x,t) is actually
transferred to any smooth function ¢.
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If the initial equation (1.1) is nonlinear, then
its derivation involves some difficulties reported
by S. K. Godunov [1].

Let us consider a very simple nonlinear
equation

| 0
ot O0x
If it is written as
u 0

uZ
o (3) =9
then the generalized solution may be defined as

a finite summable function u(x,t) for any ¢
satisfying the identity

dp u*dp
— - = = 0. 1.2
_U(u s~ 5 Ao jdxdi =0, (12)
The first problem is encountered in treating
the above equations is as follows. The same
equation may be written as

aft N a[t,
a(z“)—a(§“)=°

that results in a different definition of a general-
ized solution

if (3‘—2 % _ ”—36—"’> dxdt=0. (1.3)

Many examples may be found which evidence
that some solutions in the sense of equation (1.2)
are not the solutions in the sense of equation (1.3)
and vice versa, that is definitions (1.2) and (1.3)
are not equivalent.

The second problem which is passed over by
mathematicians in silence. It arises because due
to arbitrariness of functions ¢(x, t), we distort
the initial differential equation thus contraven-
ing the laws of nature.

In the present paper a new method to obtain
generalized solutions is suggested which does
not involve the discussed problems.
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2. PARTICULAR OPERATIONS WITH
DISCONTINUOUS FUNCTIONS

Let f = f(x) have a number of alternating dis-
continuities of the first kind, that makes suitable
its finite-difference representation. To do this,
the whole section of the changing argument x
is to be devided into i parts following the rule
X; = X4 + ih. As to the behaviour of the function
flx,), it is assumed constant within each grid
mesh and changes in a stepwise manner at the
grid nodes (Fig 1)
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If the central coordinates of each mesh
Xoi = X; + 3 (x;4, — x;) are introduced, then the
discontinuous function may be approximated by
a system of smooth functions @,(x) within the
range (Xg;_ 1, Xo;) It should be noted that the
functions ¢,(x) are to contact the sections of the
straight line at the points x,,_,, X, The be-
haviour of these functions within the interval
{(Xgi- 1. Xgy) is unimportant as finite-difference
sections does not convolute into points. The
functions ¢,(x) are evident to have inflections
inside the section {xq;.. , Xq;)-

N. P. Kasterin was the first who used such
smoothing discontinuous function [2].

In accordance with the theory of generalized
functions @,(x) (n = 1, 2, 3, ...) forms the space
of main functions for the function f = f(x,).

The section (x;. 4, X;,,) is called an interval
of the function f(x;), and (xq,_, X,) is the
carrier of the function ¢,{x).
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To satisfy the above conditions, it is necessary
to assume

flx) 2 dir = comstixi S <
i fi=const, x; < x € x;,, '
o) fi—y = const, x < X¢;
n f; = const, X = X
a, fi>fiq
o) :{ : (2.2)
m — 4, fi < i—1

The condition of adjoining the sections of the
straight-line is equivalent to zero derivatives at
the points x,, and xq;_,, €.

——— =0 ifxe, <x<xp-y (23)
A linear continuous functional defined by

X0i

(f@)= | fx)eux)dx =fi_,

X0i—-1

x _f @x) dx + f; [ i @,(x) dx (2.4)

will be referred to as a generalization of the
discontinuous function f(x;).
For example, if

I oody= [ p0dx=}
then
(f, @n) = Liizii (2.5)

To define the derivative of the generalized
function f(x;), compose the functional

Xoi

| [ (x)en(x) dx

X0i-1

(.fls (pn) =

Xoi

=f(pn I

X0i-t

~ T ferdx = — g2,

Xoi-1

xi X0

“[fiey | eiodx +£ |

Qi ~ Xi

= (fi = fi- 1) @alxy):

l(p,,’(x) dx] =

(2.6)

Here for computation of formula (2.6) the
properties of formulas (2.1) and (2.2) were used.
This equality will be used as the basis for a
general definition of the derivative of the
generalized function.
The subsequent derivatives are easily found

d*(f. @,) : /

dfx(” — — (fi — fis D @nx)),

d*(f, @) "

**‘aé;p = (_f: _.fi—l (pn (xi)‘
d"(f. @)

= (=D i~ fi- Dol Px). 27

dx"

If the absolute value of the first finite-differ-
ence derivative is introduced

dfi-y fizfion

el e - (2.8
dxgi-1  (xpi = Xgi—1) )
then formulas (2.7) may be rewritten as
d™(f. ¢,) dfi—y
' =g, 2.9
d x" " X, 29)

where
oy = (= 17 g — Xoi- )" V(xy). (2.10)

Thus, generalized derivatives of discontinuous
function f(x;) are expressed within a factor in
terms of the first finite-difference derivative. It
may be easily seen from formula (1.10) that the
factor ,_ ; determined the direction of the jump
of a discontinuous function and may therefore
be positive or negative.

3. ON HYDRODYNAMIC EQUATIONS OF
DISCONTINUOUS FLOWS

Professor N. P. Kasterin who worked at the
Moscow State University raised the question of
revising the Euler form of hydrodynamic equa-
tions as far back as 1937. Kasterin was the first
who stated and developed the idea that vortices
are generated due to discontinuities in ideal
fluid rather than to viscous forces. However, his
mathematical manipulations were only based
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upon physical intuition. In what follows it will
be demonstrated that Kasterin’s equations for
ideal fluid represent a particular case of more
general equations given by the present author.
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In a space filled with liquid an elementary
grid mesh is cut out (Fig. 2) so that its dimension

depends on the value r; — r;_, where r is the
radius vector with the coordinates x, y, z.
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Further, the hydrodynamic velocity vector
F(r)) is assumed to be a discontinuous function
that behaves as the function f(x;) (Fig. 3).

Let us consider the i-th grid mesh [r;, r;,].
Its velocity may be expanded into a Taylor
series if formula (2.9) is used
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ov,_
Vl = Vl—l + Axo:“o P Lt
X0i—1
v, _ av,_
+AYO1“06 L+ Az, 03 L
0i—1 20i— 1
y
where
AXxg; = Xo; X0r-1

Ayoi = Yoi — Yoi-1 (3.1)

Azg; = zg; — Zgi—+-

Introduce the value «; which is the ratio of the
dimensions of two meshes
Ziv1 — &

Xiv1 =X Vier — Vi

Yi = Vi-1
If a grid mesh is composed so that

o =
X — Xi—1

Zi— 2

— Xj—1 = 2(Xg; — Xoi—1)
— Yi-1 = 2Voi — Yoi-1)

Zivy = Zimg = 2Zg; — Zoi-1)

Xi+1

Vi1

then formulas (3.1) may be rewritten as

Axgi = (I + a)xgi—1 — X;_1)
= (1 + a;,)AX,,
Aygi = (1 + o)yoi — yi—y)
= (1 + a;)Ayy;
Azgi = (1 + a)zgi— 1 — 2;—4)
= (1 + o)Az, 3.2)

Now the Taylor series for the function of V;
will be rewritten as

Wiy

Vi=Vioi+ 8 <A501

Wi

0%0;— 1
i—— + AZ
o 0Yoi-1

¥y
% 020;- 1
where f§ denotes

B =1+ a)(xg; — Xo;i—1)9'V(x))
= (1 + 2)(Voi — Yoi- )0 V()
= (1 + a)zoi — Zo; — Zgi— )P'(2)).

+ Ay (3.3)
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Change of the velocity from V,_, to ¥, causes
additional rotation of all the points of the mesh
with respect to the center of gravity of the neigh-
bouring mesh with the angular velocity w;_, =
=, rot ¥,_,. A mean linear velocity of all
points of the grid mesh due to the additional
rotation is then

Vi =, rot¥,_

i Foi 1)
=f rotV

—riy)

x (ro; —
1 x (Poi—y

(3.4)

Further, the volume expansion rate of the mesh

under deformation (ro; — ro;-,) is
Vi=Blro_, —r_)divV,_, (3.5)

Then the total velocity of the i-th grid mesh will

be equal to
V=V +V +V. (3.6)

If m is used to denote the mass of the mesh,
then its kinetic energy is

T:fﬂf:, { ey /;(Ax(ﬁaiiz”‘
2 2 0xgi 4
Ay vi g L A%, AZy; vl 1)
2 0yoi—s 2 0zg;—
+ Blroiy —rio otV x V|
Vi divV,_ )

3.7

the squared velocity vector being defined in
terms of projections u, v, w as

2 2
Vi, =ul, + v, +wh .

Let the grid mesh be in a homogeneous field
of surface forces. Then its potential energy is
defined by the known formula

= — Fry,.

Surface forces are ordinarily prescribed by
their distribution density over the surface or by
the stresses

AF
P=1 i A 0.
im ——; Ao —

Now the following inverse formulas for the
vector projection are valid

F.= Paprz = " 9P,
P Ox
Fo_MOoPy . maP:
O N (G
where
m
P = Avya:

is the grid mesh density. Then the potential
energy formula will be

_m oP, OP oP.
I = Xy 2 ) )
(ax + 3 + 8:> ro.  (3.8)

Introduction of the generalized coordinates
Xgi-1» Yoi—1» Zoi— 1 and generalized velocities

transforms the system of Helmholz equations
for an elementary volume to

0H _ g oH _0

xgi, dt du,_,

cH d JH

o, drae, (3:9)
0H d JoH

0Zo; dt ow,_, J

where H = I1 — T is the kinetic potential. With
account for equations (3.7) and (3.8), the system
(3.9) becomes

%:,1 .+_
ot

y

~ PVi- VIV,

L(2P, 0P 0P
“p\lax oy T oPS

As the above equality is valid for any two neigh-
bouring meshes, the superscripts (i — 1) may be
omitted. Then use of Stokes’ hypothesis gives

LdivV,
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p%l: +p[(1 = BFVW — p¥ divV]

0 o
= —grad p + 3 Iiu(é; + grad u)]
+ 0 8£/ +grade ||+ —a> CLV
ay 1M a TR T 5 1Mz
+ grad w):l + grad (1 div V). (3.10)

Equation (3.10) was originally obtained on the
molecular-kinetic basis by A. S. Predvoditelev
[3]. If viscosity is neglected and the product
V div ¥V is assumed to be zero, then Kasterin’s
equation is obtained for the case ff = 2.

It should be noted that if ¥ # 0, then assump-
tion of a zero product is equivalent to substitu-
tion of a solid for an elementary fluid mesh at
the place of discontinuity.

4. EXAMPLE OF GENERALIZED SOLUTION

Now consider the problem of an infinite plane
interacting with an infinite vortex column which
passes through the coordinate origin normally
to the plane. If there were no plane the motion
should be governed by the law

2
p 2r
where v is the tangential velocity component,
P, is the pressure at the infinity. The vertical w
and radial u velocities would be zero in this case.
Friction of the flow against air results in secon-
dary flows which may be of interest for studying
sand-storms, water spouts and hurricanes.

It is of interest to note that treatment of this
problem on the basis of the Euler equations
leads to Felix Klein’s paradox. Klain has found
that within the framework of ideal fluid,
infinitely large energy is required to sustain a
vortex column. It might seem that viscosity
should eliminate the said paradox. However,
treatment of this problem in terms of the Navier-
Stokes equation made by M. A. Goldshtik [4]

Co
U= —,p=
2P =Pa
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has shown that for Reynolds numbers above 8
the discussed problem has no finite solution.
Assuming incompressible steady axisymmetric
fluod flow, Predvoditelev’s equations (3.10) may
be written in terms of cylindrical coordinates

Ou u v? 10p
1 - - - = - - —
( P (u or * Wé’z r>

v@z%w+§g
orr Oor 0z°
1 -p (u— + wﬁ#”—w)
0z
(a L o(re N 9 v)
orr or = 072

ow 10op
“"”( % Wa):‘béz
24
or

1 ow\ *w
o(rud  o(rw) —0
or 0z

The boundary conditions are as follows

Uu=vt=w=0atz=20

PCo
— —at z = 0.
2r?

At the infinity the fluid is stagnant
u=v=w=0;p=p,atr = 0.
At r = 0 the component w is finite, and u = 0

(no sources or sinks on the axis).
Introduce the dimensionless functions

_ T~ pe)
pc

=!
Il

Sla
S
[
| 3
g
B

~
[~} 3
o

(4.2)

(the bar above the quantities will further be
omitted).
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System (4.1) is then transformed to

du ou u®+ @*

¥

oan 2 v [ %)
- ;3? r co Kar ;7 zz)’
oP 0P v [0*® 1od
o
82 )
ow ow uw on
2 <62w Low w 62w)
ot ror oz?
ou ow
o + 5 = 0. (4.3)

The boundary conditions will respectively be-
come

Uu=P=w=0 atz=0
(p::l,ﬂ:—% atz = «
u=w=20 atr:O.

The problem under discussion belongs to the
class of similar problems. We therefore pass to
the variable # = z/r, bearing in mind that

or
or

Then the following equations are obtained

(1 - Py [u(w—nu) —u? — &?] =
+ k[(1 + #H)u" + 3qu]

(1 =P ¥(w~—nu) =k[(l +7°)@" + 3nd']

N + 2n

’

(1 -pPww—nqu) —uw] = —n
+k[(1 + 79w + 3nw + wl; W= nu.
(4.4)
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It may be easily seen that the boundary condi-
tions become

u=9=w=0 atn =0

Aa ‘o (4.5)
u=w=0,¢=1, 1= —jatn = o
The pressure may be found in a straightforward
manner by a single integration of the third
equations of system (4.4} over # and satisfying
the boundary conditions (4.5)
= (L= Bywlw — mqu) + k [(1 + n*)w
+ nw] — 1. (4.6)

The new variables and function are introduced
_ 7 o 1
BT N Y &)

xXu
= J(1 — x? 7 —
JI = x*)(w N

Then from the continuity equation we may
easily get

(w — nu)

4.7)

u=— (1 —x)y — xy;
w=J(l - x)(y - xy)  @48)

where prime denotes differentiation over x.
Now system (4.4) is simplified

k(1 = x)?y" =141 =p l:yz — ¢
1 — 2
! 5 a )(yz)” - x(yzb] 4.9)
k(1 — x)@” = (1 — p) y® (4.10)
with the boundary conditions
y0)=0;¥(1) =0:y'(0) =0 411
d0) = 0;P(1) = 1. (4.12)

Differentiation of equation (4.9) gives

—k(l — x) " + dkxy” = (1 — B)
209’ ) R
X [~ m - E(y ) :]

The above result is integrated three times with
the original boundary conditions (4.11)
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—ky(l — x?) = 2kxy = —ky"(0)x
— $ ky"(0) x*
X X X @@, yz
—_ -2 — =1
w ﬁ)[ g§§0~—x%dx 2]
000
(4.13)
The unknown y"'(0) is to be found from equation
{4.9)
1
"0) = — -
y"'(0) p

Then the final result will be
k(1 — xB)y + dkxy — (1 — ) y?

X

— 401 _/f)gggfqi_%—ﬁ +ex  (414)

000
with additional notation 2ky"(0) = C
The following notation is useful for further
manipulations

XX x Db
F(x)=4(1 — SSSU
00

The second condition {4.11) implies that
F1)=0

As regard to the order and sign of (1 — f3), we
assume

- x% + cx.
(4.15)

0<(l-p<=1
Then equation (4.10) may be rewritten as

k
1-p

Integration of the above yields

(4.16)

y¢/ (1 _ xl) ¢/I

1-—ﬁ) ydx
<p*aexp k m,
0

P = Q\Y (%ngl;klﬁ(liji;}‘)}dx
0

[

4.17)

The constant a may be found from the last

V. A. BUBNOYV

condition (4.12). It is evident that a = ¢'(0).
Further let

2k

y= oy - @18)
Then we shall have from (4.14) and (4.17)
ENEY T
— af [exp | 2s dx] dx;
A
_ {i[expils dx]dx}™'.  (4.19)

As far as formula (4.16) is valid, the unequality
established by M. A. Goldshtik holds

P(x)<xat0 € x<1. (4.20)

Now transform formula (4.15) using the formula
for transformation of repeated integral into
single integral

—1)?

iz z)ditp’dt—x + ¢x.

F(x)=2(1 - /)’)5

(4.21)

Having found C from the condition F(1) = 0
we shall find

Fix)=x — x> =21 —ﬁ){(l - x)?

X 1
td? ¢ dt
X S(l — t2)2 de + S(l " t)z:l. (4.22)
0 x

The last two terms in square brackets are strictly
positive. Therefore with account for formula
{4.16) the following inequality is valid

X

1p?
F - x? _
(x) 2 x —x* =21 — x)? X(I — tz)zdt
i I 2
o* dt
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Thus when 0 < x € 1, F(x) 2 0; therefore on
the basis of Chaplygin’s theorem on differential
inegualities it follows that s = 0, and conse-
quently, y > 0.

Using the resuits by M. A. Goldshtik,
inequality (4.23) may be specified

F(x) = Fo(x) = 3x(1 — x)?at0 < x < 1.
(4.24)

Consider the equation

o2 1=P Fi)

4k {1 — xB*
Solution {4.25) that satisfies the condition
7(0) = O 1s of the form

3 J4lex?)

5 %/ (x) J—_M,%(%x%i’ % =

4.25)

Ja = p
3k JQ2)

From comparison of equation (4.15) with
equation (4.19) in view of inequality (4.14) on
the basis of Chaplygin’s theorem on differential
inequalities, it may be concluded that

(4.26)

six) zrxjat0< x < 1. {4.27)

Function (4.16) is a meromorphic function with
the poles at the points
@ u,.>

N
"‘((1—ﬁ)

where p, are the roots of equation J_(u) = 0.
As from the condition, s{(x) is a continuous
function over the interval (0:1), then for in-
equality (4.27) to be fulfilled, it is necessary to
require that the first pole of function (4.26) would
lie outside the interval (0-1), i.e.

(4.28)

k i 1
1 > ~-. {429
o T T syt )
Inequality (4.29) may be rewritten as
Re J(1 — p) < 8. (4.30)

Hence if f = 0, we arrive at the paradox found
originally by M. A. Goldshtik: at the Reynolds
numbers above 8, the problem discussed has no
finite solution. But because of validity of
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formula (4.16) at f# 0 for any Re such a
parameter may be matched which make in-
equality (4.30) valid. Thus, the problem discussed
is soluable at any Reynolds number within the
class of smooth functions. It should be noted
that matching of parameter f is equivalent to
the choice of the main function which approxi-
mates the discontinuity function. As a set of
main functions make a space, then the solution
obtained should be understood in a generalized
sense, ie. several solutions may be always
obtained which will tend in the limit to an
ordinary solution. Probably, additional physical
considerations are necessary for singling out
this extreme solution.

The solution of the boundary-value problem
(4.9), (4.10) at the boundary conditions {4.11),
(4.12) will be sought using Dorodnitsyn’s
method of integral relations. Multiplication by
the smoothing function x(x) and integration
from zero to unity give the system of integral
relations

i 1
— k[ax)(1 — x?)? y" dx = [lx)dx
0 o

1 - x?
A (yZ)/J

1
+ (1 =P ixx)[y* — @
o 2

1
— x(y*)] dx; k [ x(x) (1 — x*) @" dx

0

1
= (1 = B[ ulx)y & dx. (4.31)
4]
The first approximation is sought as
folX) =15y = ax*(1 — x?); P = x
+ fx(1 = x3). (432

Then for determination of unknown coefficients
a, and b,, the additional nonlinear system of
algebraic equations is used

8 , 1 4 8
dhay =1+ (17)3 37 ‘Eb‘>" 1057
3 2 4
‘“”ékbi = '}’(*lgal —ﬁ)galbl) (4,33)

with the additional notation (1 — ) = 7.
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System (4.33) has been solved by successive
approximations using the iteration procedure

8 4
4k — — —
( 105 Va1n—1> ay, + (15 b
8 3—y/2
+ I_(B yb1n~1)bln = T(E)’

3
- %‘S‘Vbln—l)aln +(§k
2 b
~ 105 Yaa-1) b1y = 0. (4.34)
The calculations were carried out on a computer
“Promin-2""; these for Re = 100 are listed in
Table 1.

Any of the values given in Table 1 is a
generalized solution of the stated problem
differing by the choice of a smoothing function.
It should be noted that from the obtained set of
generalized solutions, one physical solution

must be selected. To do this the obtained
solutions should be tested for stability.

Table |
“ 0-384. 1072 0-448 . 1072 0-512.1072
a, 32914 26-112 42712
b, —1-6546 —2:4413 —4-3730
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SUR LES EQUATIONS GENERALISEES DE L’'HYDRODYNAMIQUE UTILISEES
DANS LA THEORIE DU TRANSFERT THERMIQUE

Résumé—On a présenté dans cet article une nouvelle méthode de composition des solutions générales
des équations de ’hydrodynamique. Dans I’établissement de 1’équation pour un fluide visqueux on a
tenu compte du changement discontinu de la vitesse qui intervient dans les ondes de choc, les écoulements
turbulents, les écoulements soniques et supersoniques. Cette discontinuité n’est pas incluse dans les

équations du type Navier—Stokes.

La présente méthode est illustrée par la solution du probléme sur I'intéraction d’une ligne tourbillon
avec la surface. Dans ce cas particulier, les équations d’Euler aboutissent au paradoxe connu de Félix
Klein et les équations de Navier-Stokes donnent des solutions paradoxales proposées en premier par

M. A. Goldshtik.

La méthode présentée ici élimine les paradoxes mentionnés ci-dessus.

ALLGEMEINE, IN DER WARMEUBERTRAGUNG ANGEWANDTE
HYDRODYNAMISCHEN GLEICHUNGEN

Zusammenfassung—Es wird eine neue Methode vorgeschlagen, um allgemeine Losungen der hydro-
dynamischen Gleichungen zu erhalten. In der Ableitung der Gleichung eines viskosen Fluides wurde die
diskontinuierliche Geschwindigkeitsdnderung beriicksichtigt; sie kommt in Stosswellen, Wirbelstrémung-
en und Schall- und Uberschallstrémungen vor. Diese Diskontinuitit ist in den hydrodynamischen
Gleichungen von Navier-Stokes nicht enthalten. Die vorliegende Methode wird durch die Lésung des
Problems der Wechselwirkung zwischen Wirbelfaden und Oberfliche veranschaulicht. In diesem Fall
ergeben die Euler-Gleichungen das bekannte Paradoxon von Felix Klein, wihrend die Navier—Stokes-
Gleichungen die paradoxen Losungen ergeben, die von M. A. Goldshtik zuerst untersucht wurden. Die
vorliegende Methode eliminiert diese Paradoxa.



GENERALIZED HYDRODYNAMIC EQUATIONS

Ob OBOBHIEHHLIX PEUIEHNAX YPABHEHUHU MMAPOJJUHAMURI,
NPUMEHHAEMbBIX B TEOPHUM TEINJIOOBMEHA

Annoranusa——B nanHoii pafore mpepnaraercsi HOBHII cnocof mnocTpoenus oGoSHIEHHBIX
peuienuit ypasHeHu#t rugpoauHamuru. CyTs cnocofa cocTouT B ToM, 4TO0H Npu BHIBOJE
YpaBHeHM BA3KON KUAKOCTU yYeCTh PA3PHBHOE M3MeHeHHe THAPOJMHAMMUYECKOH CKOpOCTH,
YTO MMEeT MeCTO B YAAPHBIX BOJIHAX, BUXPEBEIX TeYEHMAX U NPU 3BYKOBHIX ¥ CBEPX3BYKOBBIX
Te4eHUAX | 4TO He OTPaKeHO B YPABHUHMAX ruxpopuHamukn B dopme Haspe-Croxca.

YrazanHpl#A 1006 NpOJEMOHCTPHPOBAH Ha pellleHuy 334341 0 B3aUMOfe!CTBUN BUXPeBOIl
HATH C OBEPXHOCTBLIO. ¥ paBHEHHSA Dilllepa B 9TOM CiIy4ae HPUBOJAT K NBBECTHOMY NAPAROKCY
®enurca Hiefina, a ypasuenua Hasbe~Crokca gawnT napagoKcalbHBe pellleHUs, BIEepPBEHE
uccaenopannsie M. A. DoapgmTnrom,

ITpennaraemsii HaMu crocol nocTpoeHuA 00OCIIEHHBIX DPEINeHN YCTpaHsAeT yKasaHHBIC

HapajioKCH,
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